بازاریابی
به طور کلی ، بازاریابی دانشی ناشناخته است که با ویژگیهایی از قبیل عدم اطمینان بالا ، ساختار گمشده علّـی ودانشی، ناکامل و گسترده قابل شناسایی است .بسیاری از وظایف تصمیم گیری و حل مسـئله به صورت بدون ساختار یا نیمه ساختار یافته انجام می شود . به همین دلایل توسعه کاربرد شبکه های عصبی و الگوریتم های ژنتیک در بازاریابی نسبت به سایر حوزه های علم دشوارتر است .
از سال 1991 اقداماتی در جهت بررسی تأثیرات هوش مصنوعی در بازاریابی صورت گرفت. “کاری” و “ماتین هو” به بحث در رابطه با نقش هوش مصنوعی در بازاریابی پرداختند و جایگاه یابی رقابتی را بهوسیله متدلوژی هدف گرا مورد تجزیه و تحلیل قرار دادند . همچنین “الیس و همکارانش” گزارشی از پیشرفتهای کاربرد مدل های شبکه عصبی در مواجهه با استراتژی قیمت گذاری کششی ارائه کردند. در سال 1992″پراکتر” چگونگی کاربرد تکنولوژی شبکه های عصبی در یادگیری مدل های داده بازاریابی و نقش آنها را در ساختن سیستم های پشتیبانی از تصمیمات بازاریابی به نمایش گذاشت . در سال 1993 “کاری ” و “ماتین هو” از تکنولوژی شبکه های عصبی در مدل سازی واکنش مصرف کننده به محرک تبلیغات استفاده کردند . “رای و همکارانش” در سال 1994 شبکه های عصبی را در کمّی سازی فاکتورهای موثر در کیفیت روابط خریدارو فروشنده مورد استفاده قرار دادند.
از سوی دیگر ، “هارلی و همکاران ” در سال 1994 استفاده از الگوریتم های ژنتیک را در حل مسائل بهینه سازی بازاریابی مورد آزمایش قرار دادند . بر اساس مطالعه آنها ، کاربردهای بالقوه الگوریتم های ژنتیک در بازاریابی می تواند شامل موارد زیر باشد :
1-رفتار مصرف کننده
_ یادگیری مدل های انتخاب مصرف کننده
_ پردازش اطلاعات مصرف کننده
_ تأثیر گروه های مرجع
2- بخش بندی،انتخاب بازار هدف، جایگاه یابی
_ بهینه سازی ساختارهای محصول – بازار
_ تجزیه و تحلیل فاکتورهای کلیدی خرید
_ جایگاه یابی محصول
3- مدیریت عناصر آمیخته بازاریابی
_ بهینه سازی چرخه حیات محصول
_ طراحی محصول
_ استراتژی تبلیغات و برنامه ریزی رسانهای
_ مدیریت فروش
بانکداری و حوزه های مالی
از کاربردهای مهم و مطرح شبکه های عصبی و الگوریتم های ژنتیک در بانکداری و حوزه مسائل مالی می توان به این موارد اشاره کرد : کاربردهای اعتباری ، تجزیه و تحلیل های مالی ، سرمایه گذاری مالی ، و تجزیه و تحلیل بازار مبادله سهام .
پیش بینی
پیش بینی یکی از قدیمی ترین فعالیتها و وظایف مدیریت وتجارت بوده است . درروزگاران قدیم نمونه هایی از پیشگوییها و پیش بینی ها وجود دارد . به طور کلی ، مدیری را می توان موفق دانست که از قوه تجسم بالایی در تصمیم گیری و قضاوت برخوردار باشد . تجربه ، به انسان در پیش بینی آینده وانتخاب تصمیم درست و دادن رأی صحیح کمک می کند. روش های هوش مصنوعی توانایی بالایی را درپیش بینی و ارائه عملکرد بهتر در مواجهه بامسائل غیرخطی و سایر مشکلات مدل سازی سری های زمانی نشان داده اند.
سایر حوزه های تجاری
تا اینجا درباره کاربردهای مختلف شبکه های عصبی و الگوریتم های ژنتیک در بخشهای کلیدی تجارت صحبت کردیم : بازاریابی ، بانکداری و مالی ، پیش بینی . قطعاً حوزه های دیگری از تجارت و کسب و کارنیز وجود دارد که در اندازه های متفاوت می توانند از مزایای استفاده از شبکه های عصبی و الگوریتم های ژنتیک منتفع شوند . به عنوان مثال می توان به کاربرد شبکه های عصبی در صنعت هتلداری ، ارزیابی داراییها و پیش بینی تورم اشاره کرد. علاوه بر این ، کاملاً مشهود است که بخشهایی ( مانند تولید ، صنایع سنگین ، انرژی ، ساخت و ساز ) وجود دارند که از نظر ما دور مانده اند .
مزایای استفاده از فناوریهای هوش مصنوعی
با بررسی کلی نظریات و تحقیقات موجود می توان مزایای استفاده از فناوریهای هوش مصنوعی و الگوریتم های ژنتیک را به موارد زیرتقسیم کرد:
_ ارائه خدمات بهتر به مشتری
_ بهینه سازی زمان انجام وتکمیل وظایف
_ افزایش تولید
_ استفاده اثربخش تر از منابع
_ سازگاری و ثبات بیشتر در تصمیم گیری
منبع: سایت learning5040.ir